南宋杨辉是杭州人,是南宋著名的数学家。关于杨辉的出生年月和生平阅历没有详细的记载,只知道杨辉曾在南宋朝廷任职,多数时间都在苏州杭州一带。杨辉为官清廉而有正义感,深得百姓称颂。说起杨辉的贡献,不得不提的就是他在算数上的成就,后人将杨辉、秦九韶、李冶、朱世杰并称“宋元数学四大家”。南宋杨辉一生写过很多著作,都是数学相关的理论知识。其中,他写有《详解九章算法》、《日用算法》、《乘除通变本末》、《田亩比类乘除捷法》等书籍。杨辉根据日常需要的运算总结出算法理论,帮助百姓们计算需求。值得一提的是,杨辉是世界上第一个排列纵横图,并且从中总结出构成规律的理论知识,推动了世界算术进程,具有很高的现实意义。杨辉生活年间,手工业和商业已经有了较大发展,社会经济得到提升的同时,商人和百姓们都需要用到数学计算。社会对算术的需求引发了杨辉的重视。
事实上,资本经济萌芽时期,就有数学家总结了日常计算方法。晚唐时期,出现可一些较为实用的计算书籍,到了南宋年间时,诸如《夏侯阳算经》等书籍已经失传了。随后,南宋杨辉在总结前人算术基础上,又总结出一种更为简单便捷的算法。所以,后人们在提到杨辉在数学方面的贡献时,也会想起他改进乘除计算技术,让运算更加便捷化和简单化。不仅提高了运算速度,也提高了准确率。
杨辉担任台州官吏时,一次,看着窗外春光无限好,杨辉便打算巡游台州。一边体察民情,一边欣赏美丽的春景,实在是一件很美妙的事情。杨辉坐在轿子中,看见大自然一片万物复苏的场景,心情非常愉悦。他撩起轿帘正在欣赏沿途的春光,突然轿子停住了。杨辉问侍卫为何立即停下,侍卫回答说,前方路上有个小男孩正蹲在不知在干什么。另一位侍卫急忙上前呵斥这位小男孩,让他赶紧让路。小男孩聚精会神地在地上比划,丝毫不听侍卫的命令。随后,杨辉下轿来到小男孩身旁,摸着头问这位小男孩正在干什么。小男孩回答说,这是老师布置的一道算术,必须在下午上课之前算出来。如果你们的马从这儿经过的话,就将我的计算成果破坏了。杨辉一看,原来是九宫图,于是杨辉也蹲在地上,和小男孩一起计算。已经过了正午,俩人才将九宫格填满,无论横加竖加斜加,结果都是15。小男孩很感激杨辉帮忙,便邀请杨辉去他家吃饭。
到小男孩家之后,父母才说出了其中缘由,因家境贫困,父母没有多余的钱财供小男孩上课。小男孩乘放牛时偷偷地跑到私塾下听课,每天回家后,就努力回忆今天听到的知识。杨辉听后,给了小男孩父母十两银子,并让小男孩到私塾念书。下午杨辉带小男孩去私塾时,教书先生和杨辉聊起了数学问题。杨辉回到家后,常常投入数学演算中,并总结出九宫图规律,即为:“九子斜排,上下对易,左右相更,四维挺出”。
杨辉在总结前朝数学家的成果时,又极大地创新和发展了数学技术,推动了中国算术领域的进步。北宋时期出现了一种名为增成法的算术,杨辉理解其中的规律后,进一步完善了增成法的运算和适用范围。杨辉认为,增成法虽然在一定程度上避免了试商。是被除数增多时,运算量不仅会加大,正确率也不高。杨辉在所著《乘除通变算宝》一书中,概括了简便的计算规律,比如“归数求成十”、“归数自上加”等,方便了百姓计算问题。其次,杨辉在改进算术计算同时,提出了一些实用性很强的口诀。基于口诀的便捷化,算盘技术应运而生。所以,从客观上来讲,杨辉推进了算术进程,也间接衍生了算盘这一产物。第三,杨辉对纵横图有了较深的理解,在他著有《续古摘奇算法》一书中,提出了纵横图的研究记录和算法,这部《续古摘奇算法》也成为世界上最早对纵横图有过理论研究的著作。纵横图是杨辉起的名字,在杨辉之前人们将纵横图称为幻方。汉代数学家郑玄在《易纬注》和《数术记遗》两书中,都有介绍幻方的生神奇之处。幻方因此被赋予了神秘的色彩。杨辉在《续古摘奇算法》中创作了多样图形,有四阶纵横图、百子图、“聚八”图、“攒九”图等。
除此之外,杨辉最大的贡献成果便是他对垛积术的研究。垛积术类似等差数列,和等差数列不同的是,垛积术针对的是高级等差数列的研究。随后,杨辉还总结了等差数列求和的公式。杨辉这一研究成果,极大地丰富了数学领域理论。