多重分形如何理解(曲面空间分形不规)

   2023-06-05 互联网0
核心提示:1、多重分形(Multifractal),是描述在不规则的分形空间之上质量分布的定量化工具。2、现实中的复杂系统一般都具有自相似特征,这种自相似性不仅仅体现为几何形体上的自相似,也体现为某种质量、测度在空间上的分配。例如,当我们考察人类城市

多重分形如何理解(曲面空间分形不规)

1、多重分形(Multifractal),是描述在不规则的分形空间之上质量分布的定量化工具。

2、现实中的复杂系统一般都具有自相似特征,这种自相似性不仅仅体现为几何形体上的自相似,也体现为某种质量、测度在空间上的分配。例如,当我们考察人类城市中人口或者灯光在空间上的分布的时候,我们实际上在考查一个三维空间中的曲面。其中,曲面的横纵坐标分别是城市空间的经纬度,而高度坐标是对应经纬度点的人口或者灯光的密度值。然而,如果我们真的画出来这样的曲面,就会发现它并不光滑,而是非常地参差不齐,波动涨落非常剧烈的,因此传统的欧几里德几何工具以及微积分数学很难刻画。如果我们做这个曲面的等高线图,就会发现,每个等高线所包围的区域都是非常参差不齐的分形几何体。那么,我们该如何对这类不规则的空间分布进行刻画?多重分形(Multifractal)便是描述这类在不规则的分形空间之上质量分布的定量化工具。

 
反对 0举报 0 评论 0
 

免责声明:本文仅代表作者个人观点,与爱美生活网(本网)无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
    本网站有部分内容均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,若因作品内容、知识产权、版权和其他问题,请及时提供相关证明等材料并与我们留言联系,本网站将在规定时间内给予删除等相关处理.

点击排行